The Unified AI Integration with Mistral and Gemini project modernizes the Model Context Protocol (MCP) to integrate two powerful AI models, Mistral and Gemini, into a single application. This implementation provides a unified interface for enhanced performance, cost optimization, and context sharing across AI systems.
Define the MCP standard with the following components:
json
{
"request_id": "uuid",
"model": "mistral|gemini|both",
"content": {"text": "", "files": []},
"context": {"session": {}, "tools": []},
"routing_rules": {"fallback": "auto", "priority": 0-100}
}
/mcp/process
: Main processing endpoint./mcp/feedback
: Response refinement loop./mcp/context
: Session management.Create model-specific adapters to translate MCP protocol to each AI's API.
Mistral Adapter:
class MistralMCPAdapter:
def process(self, mcp_request):
mistral_prompt = f"CONTEXT: {mcp_request['context']}\nQUERY: {mcp_request['content']}"
response = mistral.generate(mistral_prompt)
return self._to_mcp_format(response)
def _to_mcp_format(self, raw_response):
return {
"model": "mistral",
"content": raw_response.text,
"metadata": {
"tokens_used": raw_response.usage,
"confidence": raw_response.scores
}
}
Gemini Adapter:
class GeminiMCPAdapter:
def process(self, mcp_request):
if mcp_request['content']['files']:
response = gemini.generate_content(
[mcp_request['content']['text'], *mcp_request['content']['files']]
)
else:
response = gemini.generate_text(mcp_request['content']['text'])
return {
"model": "gemini",
"content": response.text,
"metadata": {
"safety_ratings": response.safety_ratings,
"citation_metadata": response.citation_metadata
}
}
def unified_processing(mcp_request):
if mcp_request['model'] == 'both':
mistral_result = MistralAdapter.process(mcp_request)
gemini_result = GeminiAdapter.process(mcp_request)
return consensus_engine(mistral_result, gemini_result)
elif mcp_request['model'] == 'mistral':
return MistralAdapter.process(mcp_request)
elif mcp_request['model'] == 'gemini':
return GeminiAdapter.process(mcp_request)
else:
raise MCPError("Invalid model selection")
class MCPContextManager:
def __init__(self):
self.session_context = {}
self.tool_context = {
'database': SQLConnector(),
'apis': [SlackAPI(), GoogleWorkspace()],
'filesystem': S3Storage()
}
def update_context(self, session_id, new_context):
self.session_context[session_id] = {
'immediate': new_context,
'historical': self._rollup_context(session_id),
'persistent': self._load_persistent_context(session_id)
}
class MCPToolConnector:
def __init__(self, tool_type):
self.tool = self._initialize_tool(tool_type)
def execute(self, action, params):
try:
result = self.tool.execute(action, params)
return self._format_mcp_response(result)
except ToolError as e:
return self._format_error(e)
def _format_mcp_response(self, result):
return {
"tool_response": result.data,
"metadata": {
"execution_time": result.timing,
"confidence": result.accuracy_score
}
}
mcp_rate_limiter = RateLimiter(
limits={
'mistral': TokenBucket(rate=100/60), # 100 requests/minute
'gemini': TokenBucket(rate=50/60),
'combined': TokenBucket(rate=75/60)
}
)
services:
mcp_gateway:
image: nginx-plus
config:
rate_limiting: enabled
core_service:
image: python:3.11
components:
- model_adapter_layer
- context_manager
- tool_connectors
monitoring:
stack: prometheus + grafana
metrics:
- model_performance
- context_hit_rate
- tool_usage
Implement 3-level verification:
Example Test Case:
def test_cross_model_processing():
request = {
"model": "both",
"content": "Explain quantum computing in simple terms",
"context": {"user_level": "expert"}
}
response = unified_processing(request)
assert 'mistral' in response['sources']
assert 'gemini' in response['sources']
assert validate_consensus(response['content'])
The provided code examples may not produce real results and are intended as a conceptual guide. Use this foundation to build your own MCP-like framework.
Credit: Blue Lotus