The MCP Server - Image is a powerful image processing server designed for AI applications, web services, and data processing pipelines. It provides enterprise-grade image handling with minimal code, making it ideal for developers working with image data.
shell
uv venv
# On Windows:
.venv\Scripts\activate
# On Unix/MacOS:
source .venv/bin/activate
shell
uv pip install -r requirements.txt
To start the MCP server directly:
uv run python mcp_image.py
~/.codeium/windsurf/mcp_config.json
json
{
"mcpServers": {
"image": {
"command": "uv",
"args": ["--directory", "/path/to/mcp-image", "run", "mcp_image.py"]
}
}
}
json
{
"mcpServers": {
"image": {
"command": "uv",
"args": ["--directory", "/path/to/mcp-image", "run", "mcp_image.py"]
}
}
}
Fetch and process images from URLs or local file paths.
Parameters:
- image_sources
: List of URLs or file paths to images
Returns:
List of processed images with base64 encoding and MIME types
You can now use commands like:
- "Fetch these images: [list of URLs or file paths]"
- "Load and process this local image: [file_path]"
# URL-only test
[
"https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/Chocolate_%28blue_background%29.jpg/400px-Chocolate_%28blue_background%29.jpg",
"https://imgs.search.brave.com/Sz7BdlhBoOmU4wZjnUkvgestdwmzOzrfc3GsiMr27Ik/rs:fit:860:0:0:0/g:ce/aHR0cHM6Ly9pbWdj/ZG4uc3RhYmxlZGlm/ZnVzaW9ud2ViLmNv/bS8yMDI0LzEwLzE4/LzJmOTY3NTVbLTM0/YmQtNDczNi1iNDRh/LWJlMTVmNGM5MDBm/My5qcGc",
"https://shigacare.fukushi.shiga.jp/mumeixxx/img/main.png"
]
# Mixed URL and local file test
[
"https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/Chocolate_%28blue_background%29.jpg/400px-Chocolate_%28blue_background%29.jpg",
"C:\\Users\\username\\Pictures\\image1.jpg",
"https://imgs.search.brave.com/Sz7BdlhBoOmU4wZjnUkvgestdwmzOzrfc3GsiMr27Ik/rs:fit:860:0:0:0/g:ce/aHR0cHM6Ly9pbWdj/ZG4uc3RhYmxlZGlm/ZnVzaW9ud2ViLmNv/bS8yMDI4LzEwLzE4/LzJmOTY3NTVbLTM0/YmQtNDczNi1iNDRh/LWJlMTVmNGM5MDBm/My5qcGc",
"C:\\Users\\username\\Pictures\\image2.jpg"
]
If you encounter any issues:
1. Check that all dependencies are installed correctly
2. Verify that the server is running and listening for connections
3. For local image loading issues, ensure the file paths are correct and accessible
4. For "Unsupported image type" errors, verify the content type handling
5. Look for any error messages in the server output
Contributions are welcome! Please feel free to submit a Pull Request.
This project is licensed under the MIT License - see the LICENSE file for details.
If you find this project helpful and would like to support future projects, consider buying us a coffee! Your support helps us continue building innovative AI solutions.