InsightFlow is an advanced analytics platform that combines real-time data processing with AI-powered insights using the Model Context Protocol (MCP). It provides seamless integration with Claude AI for intelligent data analysis and decision support.
git clone https://github.com/yourusername/insightflow.git
cd insightflow
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
cp config/config.example.yaml config/config.yaml
# Edit config.yaml with your settings
cp .env.example .env
# Edit .env with your credentials
python app/main.py
Access the API documentation:
http://localhost:8000/docs
GET /tools
- List available MCP toolsPOST /tool/{tool_name}
- Execute specific toolWS /ws
- WebSocket endpoint for real-time communicationThe system can be configured through config.yaml
or environment variables:
server:
host: "0.0.0.0"
port: 8000
debug: false
mcp:
enabled: true
websocket_path: "/ws"
max_connections: 100
ai:
model_name: "claude-2"
temperature: 0.7
max_tokens: 2000
insightflow/
├── app/
│ ├── main.py # Application entry point
│ ├── config.py # Configuration management
│ ├── core/ # Core MCP and server logic
│ ├── data/ # Data processing modules
│ ├── analytics/ # Analytics engine
│ ├── ai/ # AI integration
│ ├── api/ # API endpoints
│ └── models/ # Data models
└── requirements.txt # Python dependencies
pytest tests/
git checkout -b feature/AmazingFeature
)git commit -m 'Add some AmazingFeature'
)git push origin feature/AmazingFeature
)This project is licensed under the MIT License - see the LICENSE file for details.
For support and questions, please open an issue in the GitHub repository or contact the maintainers.
Made with ❤️ by the Ilias RAFIK