ilissrk_insightflow

ilissrk_insightflow

by ilissrk
A real-time analytics dashboard server with MCP architecture, integrating AI services like Claude for intelligent data analysis.

InsightFlow Analytics Dashboard

InsightFlow is an advanced analytics platform that combines real-time data processing with AI-powered insights using the Model Context Protocol (MCP). It provides seamless integration with Claude AI for intelligent data analysis and decision support.

🚀 Features

  • MCP Integration: Full support for Model Context Protocol, enabling advanced AI capabilities
  • Real-time Analytics: Process and analyze data streams in real-time
  • AI-Powered Insights: Leverage Claude AI for intelligent data interpretation
  • Flexible Data Processing: Support for multiple data sources and formats
  • RESTful & WebSocket APIs: Comprehensive API support for various integration needs

🛠️ Technology Stack

  • Backend: Python 3.9+, FastAPI
  • AI Integration: Anthropic Claude API
  • Data Processing: Pandas, NumPy
  • Database: SQLAlchemy (supports multiple databases)
  • API: REST + WebSocket
  • Protocol: Model Context Protocol (MCP)

📋 Prerequisites

  • Python 3.9 or higher
  • Anthropic API key
  • Redis (for caching and message queuing)

🔧 Installation

  1. Clone the repository:
git clone https://github.com/yourusername/insightflow.git
cd insightflow
  1. Create and activate virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Configure environment:
cp config/config.example.yaml config/config.yaml
# Edit config.yaml with your settings
  1. Set up environment variables:
cp .env.example .env
# Edit .env with your credentials

🚀 Quick Start

Running Locally

  1. Start the server:
python app/main.py
  1. Access the API documentation:

    http://localhost:8000/docs

📚 API Documentation

REST API Endpoints

  • GET /tools - List available MCP tools
  • POST /tool/{tool_name} - Execute specific tool
  • WS /ws - WebSocket endpoint for real-time communication

MCP Tools

  1. Data Analysis
    • Analyze datasets with configurable metrics
    • Generate statistical insights
    • Support for time-series analysis
  2. Query Data
    • Flexible data querying capabilities
    • Filter and aggregate data
    • Export results in multiple formats
  3. Generate Insight
    • AI-powered data interpretation
    • Trend identification
    • Anomaly detection

🔧 Configuration

The system can be configured through config.yaml or environment variables:

server:
  host: "0.0.0.0"
  port: 8000
  debug: false

mcp:
  enabled: true
  websocket_path: "/ws"
  max_connections: 100

ai:
  model_name: "claude-2"
  temperature: 0.7
  max_tokens: 2000

🔍 Development

Project Structure

insightflow/
├── app/
│   ├── main.py           # Application entry point
│   ├── config.py         # Configuration management
│   ├── core/             # Core MCP and server logic
│   ├── data/             # Data processing modules
│   ├── analytics/        # Analytics engine
│   ├── ai/               # AI integration
│   ├── api/              # API endpoints
│   └── models/           # Data models
└── requirements.txt      # Python dependencies

Running Tests

pytest tests/

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🤝 Support

For support and questions, please open an issue in the GitHub repository or contact the maintainers.

🙏 Acknowledgments

  • Anthropic for Claude AI integration
  • Model Context Protocol community
  • All contributors and users of InsightFlow

Made with ❤️ by the Ilias RAFIK

Features & Capabilities

Categories
mcp_server model_context_protocol python claude real-time_analytics api_integration data_processing fastapi

Implementation Details

Stats

0 Views
2 GitHub Stars

Repository Info

ilissrk Organization

Similar MCP Servers

continuedev_continue by continuedev
25049
21423
9300