langchain_ai_langchainjs_mcp_adapters

langchain_ai_langchainjs_mcp_adapters

by langchain-ai

License

Skip to content

You signed in with another tab or window. Reload
to refresh your session. You signed out in another tab or window. Reload
to refresh your session. You switched accounts on another tab or window. Reload
to refresh your session. Dismiss alert

langchain-ai / langchainjs-mcp-adapters Public

Adapters for integrating Model Context Protocol (MCP) tools with LangChain.js applications, supporting both stdio and SSE transports.

License

MIT license

72 stars
9 forks
Branches
Tags
Activity

Star

Notifications
You must be signed in to change notification settings

langchain-ai/langchainjs-mcp-adapters

main

24 Branches
17 Tags


Go to file

Code

Folders and files

| Name | | Name | Last commit message | Last commit date |
| --- | --- | --- | --- |
| Latest commit
-------------

github-actions[bot]
github-actions[bot]

chore: bump version to v0.3.4 [skip ci]

Mar 24, 2025

b431314
 · Mar 24, 2025

History
-------

66 Commits

| | |
| .github | | .github | fix: fix post-release commit (
#34
) | Mar 22, 2025 |
| .husky | | .husky | fix: update husky pre-commit hook and add GitHub Actions permissions | Mar 3, 2025 |
| .yarn | | .yarn | fix: fix CJS by dynamically importing json-schema-to-zod (
#37
) | Mar 24, 2025 |
| __tests__ | | __tests__ | fix: build & import issues (
#32
) | Mar 22, 2025 |
| examples | | examples | fix: build & import issues (
#32
) | Mar 22, 2025 |
| src | | src | fix: fix CJS by dynamically importing json-schema-to-zod (
#37
) | Mar 24, 2025 |
| .eslintrc.cjs | | .eslintrc.cjs | fix: build & import issues (
#32
) | Mar 22, 2025 |
| .gitignore | | .gitignore | fix: build & import issues (
#32
) | Mar 22, 2025 |
| .npmignore | | .npmignore | chore: prepare for npm publishing, add .npmignore, CHANGELOG and CONT… | Mar 3, 2025 |
| .prettierrc | | .prettierrc | fix: build & import issues (
#32
) | Mar 22, 2025 |
| .prettierrc.json | | .prettierrc.json | chore: prepare for npm publishing, add .npmignore, CHANGELOG and CONT… | Mar 3, 2025 |
| .yarnrc.yml | | .yarnrc.yml | fix: build & import issues (
#32
) | Mar 22, 2025 |
| CHANGELOG.md | | CHANGELOG.md | Release v0.1.7 | Mar 8, 2025 |
| CONTRIBUTING.md | | CONTRIBUTING.md | chore: prepare for npm publishing, add .npmignore, CHANGELOG and CONT… | Mar 3, 2025 |
| LICENSE | | LICENSE | chore: prepare for npm publishing, add .npmignore, CHANGELOG and CONT… | Mar 3, 2025 |
| README.md | | README.md | export loadMcpTools (
#29
) | Mar 20, 2025 |
| RELEASE_NOTES.md | | RELEASE_NOTES.md | Release v0.1.7 | Mar 8, 2025 |
| langchain.config.js | | langchain.config.js | fix: build & import issues (
#32
) | Mar 22, 2025 |
| package.json | | package.json | chore: bump version to v0.3.4 [skip ci] | Mar 24, 2025 |
| tsconfig.cjs.json | | tsconfig.cjs.json | fix: build & import issues (
#32
) | Mar 22, 2025 |
| tsconfig.examples.json | | tsconfig.examples.json | break: remove winston in favor of the debug package (
#25
) | Mar 19, 2025 |
| tsconfig.json | | tsconfig.json | fix: build & import issues (
#32
) | Mar 22, 2025 |
| tsconfig.tests.json | | tsconfig.tests.json | fix: build & import issues (
#32
) | Mar 22, 2025 |
| vitest.config.ts | | vitest.config.ts | fix: pass inputSchema to LangChain tools & fail loudly (
#20
) | Mar 18, 2025 |
| vitest.setup.ts | | vitest.setup.ts | fix: pass inputSchema to LangChain tools & fail loudly (
#20
) | Mar 18, 2025 |
| yarn.lock | | yarn.lock | fix: don't autorun husky on npm install (
#35
) | Mar 22, 2025 |
| View all files | | |

Repository files navigation

LangChain.js MCP Adapters

npm version
License: MIT

This library provides a lightweight wrapper that makesAnthropic Model Context Protocol (MCP)
tools compatible with LangChain.js
and LangGraph.js
.

Features

  • 🔌 Transport Options

    • Connect to MCP servers via stdio (local) or SSE (remote)
    • Support for custom headers in SSE connections for authentication
    • Configurable reconnection strategies for both transport types
    • 🔄 Multi-Server Management

    • Connect to multiple MCP servers simultaneously

    • Auto-organize tools by server or access them as a flattened collection
    • Convenient configuration via JSON file
    • 🧩 Agent Integration

    • Compatible with LangChain.js and LangGraph.js

    • Optimized for OpenAI, Anthropic, and Google models
    • 🛠️ Development Features

    • Flexible configuration options

    • Robust error handling

Installation

npm install @langchain/mcp-adapters

Optional Dependencies

For SSE connections with custom headers in Node.js:

npm install eventsource

For enhanced SSE header support:

npm install extended-eventsource

Prerequisites

  • Node.js >= 18
  • For stdio transport: Python MCP servers require Python 3.8+
  • For SSE transport: A running MCP server with SSE endpoint
  • For SSE with headers in Node.js: The eventsource package

Quickstart

Here is a simple example of using the MCP tools with a LangGraph agent.

npm install @langchain/mcp-adapters @langchain/langgraph @langchain/core @langchain/openai

export OPENAI_API_KEY=<your_api_key>

Server

First, let's create an MCP server that can add and multiply numbers.

# math_server.py
from mcp.server.fastmcp import FastMCP

mcp = FastMCP("Math")

@mcp.tool()
def add(a: int, b: int) -> int:
    """Add two numbers"""
    return a + b

@mcp.tool()
def multiply(a: int, b: int) -> int:
    """Multiply two numbers"""
    return a * b

if __name__ == "__main__":
    mcp.run(transport="stdio")

Client

import { Client } from '@modelcontextprotocol/sdk/client/index.js';
import { StdioClientTransport } from '@modelcontextprotocol/sdk/client/stdio.js';
import { ChatOpenAI } from '@langchain/openai';
import { createReactAgent } from '@langchain/langgraph/prebuilt';
import { loadMcpTools } from '@langchain/mcp-adapters';

// Initialize the ChatOpenAI model
const model = new ChatOpenAI({ modelName: 'gpt-4' });

// Create transport for stdio connection
const transport = new StdioClientTransport({
  command: 'python',
  args: ['math_server.py'],
});

// Initialize the client
const client = new Client({
  name: 'math-client',
  version: '1.0.0',
});

try {
  // Connect to the transport
  await client.connect(transport);

  // Get tools
  const tools = await loadMcpTools("math", client);

  // Create and run the agent
  const agent = createReactAgent({ llm: model, tools });
  const agentResponse = await agent.invoke({
    messages: [{ role: 'user', content: "what's (3 + 5) x 12?" }],
  });
  console.log(agentResponse);
} catch (e) {
  console.error(e);
} finally {
  // Clean up connection
  await client.close();
}

Multiple MCP Servers

The library also allows you to connect to multiple MCP servers and load tools from them:

Server

# math_server.py
...

# weather_server.py
from mcp.server.fastmcp import FastMCP

# Create a server
mcp = FastMCP(name="Weather")

@mcp.tool()
def get_temperature(city: str) -> str:
    """Get the current temperature for a city."""
    # Mock implementation
    temperatures = {
        "new york": "72°F",
        "london": "65°F",
        "tokyo": "25°C",
    }

    city_lower = city.lower()
    if city_lower in temperatures:
        return f"The current temperature in {city} is {temperatures[city_lower]}."
    else:
        return "Temperature data not available for this city"

# Run the server with SSE transport
if __name__ == "__main__":
    mcp.run(transport="sse")

Client

import { MultiServerMCPClient } from '@langchain/mcp-adapters';
import { ChatOpenAI } from '@langchain/openai';
import { createReactAgent } from '@langchain/langgraph/prebuilt';

// Create client and connect to server
const client = new MultiServerMCPClient();
await client.connectToServerViaStdio('math-server', 'python', ['math_server.py']);
await client.connectToServerViaSSE('weather-server', 'http://localhost:8000/sse');
const tools = client.getTools();

// Create an OpenAI model
const model = new ChatOpenAI({
  modelName: 'gpt-4o',
  temperature: 0,
});

// Create the React agent
const agent = createReactAgent({
  llm: model,
  tools,
});

// Run the agent
const mathResponse = await agent.invoke({
  messages: [{ role: 'user', content: "what's (3 + 5) x 12?" }],
});
const weatherResponse = await agent.invoke({
  messages: [{ role: 'user', content: 'what is the weather in nyc?' }],
});

await client.close();

Below are more detailed examples of how to configure MultiServerMCPClient.

Basic Connection

import { MultiServerMCPClient } from '@langchain/mcp-adapters';

// Create a client
const client = new MultiServerMCPClient();

// Connect to a local server via stdio
await client.connectToServerViaStdio(
  'math-server', // Server name
  'python', // Command to run
  ['./math_server.py'] // Command arguments
);

// Connect to a remote server via SSE
await client.connectToServerViaSSE(
  'weather-server', // Server name
  'http://localhost:8000/sse' // SSE endpoint URL
);

// Get all tools from all servers as a flattened array
const tools = client.getTools();

// Get tools from specific servers
const mathTools = client.getTools(['math-server']);

// Get tools grouped by server name
const toolsByServer = client.getToolsByServer();

// Close all connections when done
await client.close();

Note

For stdio connections, the transport field is optional. If not specified, it defaults to 'stdio'.

With Authentication Headers

// Connect to a server with authentication
await client.connectToServerViaSSE(
  'auth-server',
  'https://api.example.com/mcp/sse',
  {
    Authorization: 'Bearer token',
    'X-API-Key': 'your-api-key',
  },
  true // Use Node.js EventSource for header support
);

Configuration via JSON

Define your server connections in a JSON file:

{
  "servers": {
    "math": {
      "command": "python",
      "args": ["./math_server.py"]
    },
    "weather": {
      "transport": "sse",
      "url": "http://localhost:8000/sse",
      "headers": {
        "Authorization": "Bearer token"
      },
      "useNodeEventSource": true
    }
  }
}

Then load it in your code:

import { MultiServerMCPClient } from '@langchain/mcp-adapters';

// Load from default location (./mcp.json)
const client = MultiServerMCPClient.fromConfigFile();
// Or specify a custom path
// const client = MultiServerMCPClient.fromConfigFile('./config/mcp.json');

await client.initializeConnections();
const tools = client.getTools();

Enhanced Configuration Management

LangChainJS-MCP-Adapters provides flexible and powerful configuration management capabilities:

Automatic Default Configuration

The client automatically looks for and loads a mcp.json file from the current working directory if no explicit configuration is provided:

// This will automatically load from ./mcp.json if it exists
const client = new MultiServerMCPClient();
await client.initializeConnections();

Configuration Loading Options

There are multiple ways to load configurations:

// Method 1: Automatic default loading
const client1 = new MultiServerMCPClient(); // Automatically checks for mcp.json

// Method 2: From specified config file
const client2 = MultiServerMCPClient.fromConfigFile('./config/custom-mcp.json');

Combining Multiple Configuration Sources

You can combine configurations from multiple sources - they will be merged rather than replaced:

// Start with default configuration or empty if no mcp.json exists
const client = new MultiServerMCPClient();

// Add another configuration file
client.addConfigFromFile('./team1-servers.json');

// Add yet another configuration file
client.addConfigFromFile('./team2-servers.json');

// Add configurations directly in code
client.addConnections({
  'custom-server': {
    transport: 'stdio',
    command: 'python',
    args: ['./special_server.py'],
  },
});

// Initialize all connections from all sources
await client.initializeConnections();

Configuration Processing Order

Configurations are processed in the order they are added:

  1. Constructor argument or automatic mcp.json (if present)
  2. Each addConfigFromFile() call in sequence
  3. Each addConnections() call in sequence

If the same server name appears in multiple configurations, the later configuration takes precedence, allowing for overriding settings.

Direct Connection Methods

For simple use cases, you can bypass configuration files entirely and connect to servers directly using the provided connection methods:

const client = new MultiServerMCPClient();

// Add a stdio connection
await client.connectToServerViaStdio(
  'math-server',
  'python',
  ['./math_server.py'],
  // Optional environment variables
  { PYTHONPATH: './lib' },
  // Optional restart configuration
  { enabled: true, maxAttempts: 3, delayMs: 2000 }
);

// Add an SSE connection
await client.connectToServerViaSSE(
  'remote-server',
  'https://api.example.com/mcp/sse',
  // Optional headers
  { Authorization: 'Bearer token' },
  // Optional Node.js EventSource flag
  true,
  // Optional reconnection configuration
  { enabled: true, maxAttempts: 5, delayMs: 1000 }
);

Environment Variable Substitution

Configuration files support environment variable substitution using ${ENV_VAR} syntax in both string values and environment variable objects:

{
  "servers": {
    "api-server": {
      "transport": "sse",
      "url": "https://${API_DOMAIN}/sse",
      "headers": {
        "Authorization": "Bearer ${API_TOKEN}"
      }
    },
    "local-server": {
      "transport": "stdio",
      "command": "python",
      "args": ["./server.py"],
      "env": {
        "OPENAI_API_KEY": "${OPENAI_API_KEY}",
        "DEBUG_LEVEL": "info"
      }
    }
  }
}

Configuration File Structure

Below is the complete schema for the configuration file:

{
  "servers": {
    "server-name": {
      // For stdio transport (transport field is optional for stdio)
      "transport": "stdio", // Optional for stdio, defaults to "stdio" if command and args are present
      "command": "python",
      "args": ["./server.py"],
      "env": {
        "ENV_VAR": "value"
      },
      "encoding": "utf-8",
      "encodingErrorHandler": "strict",
      "restart": {
        "enabled": true,
        "maxAttempts": 3,
        "delayMs": 1000
      },

      // For SSE transport (transport field is required)
      "transport": "sse",
      "url": "http://localhost:8000/sse",
      "headers": {
        "Authorization": "Bearer token"
      },
      "useNodeEventSource": true,
      "reconnect": {
        "enabled": true,
        "maxAttempts": 3,
        "delayMs": 1000
      }
    }
  }
}

Note

For stdio connections, the transport field is optional. If not specified, it defaults to 'stdio' when command and args are present.

Browser Environments

When using in browsers:

  • Native EventSource API doesn't support custom headers
  • Consider using a proxy or pass authentication via query parameters
  • May require CORS configuration on the server side

Troubleshooting

Common Issues

  1. Connection Failures:

    • Verify the MCP server is running
    • Check command paths and network connectivity
    • Tool Execution Errors:

    • Examine server logs for error messages

    • Ensure input parameters match the expected schema
    • Headers Not Applied:

    • Install the recommended extended-eventsource package

    • Set useNodeEventSource: true in SSE connections

Debug Logging

This package makes use of the debug
package for debug logging.

Logging is disabled by default, and can be enabled by setting the DEBUG environment variable as per the instructions in the debug package.

To output all debug logs from this package:

DEBUG='@langchain/mcp-adapters:*'

To output debug logs only from the client module:

DEBUG='@langchain/mcp-adapters:client'

To output debug logs only from the tools module:

DEBUG='@langchain/mcp-adapters:tools'

License

MIT

Acknowledgements

Big thanks to @vrknetha
, @cawstudios
for the initial implementation!

Contributing

Contributions are welcome! Please check out our contributing guidelines
for more information.

About

Adapters for integrating Model Context Protocol (MCP) tools with LangChain.js applications, supporting both stdio and SSE transports.

Topics

javascript
typescript
mcp
ai-tools
langchain
llm-tools
openai-functions
langchainjs
llm-agents
agent-tools
llm-integration
model-context-protocol

Resources

Readme

License

MIT license

Activity

Custom properties

Stars

72 stars

Watchers

2 watching

Forks

9 forks

Report repository

Releases 13


v0.3.4 Latest\
\
Mar 24, 2025

+ 12 releases

Packages 0


No packages published

Contributors 4


Languages

You can’t perform that action at this time.

Features & Capabilities

Categories
mcp_server model_context_protocol

Implementation Details

Stats

0 Views
72 GitHub Stars

Repository Info

langchain-ai Organization

Similar MCP Servers

continuedev_continue by continuedev
25049
21423
9300