A powerful MCP (Model Context Protocol) server implementation that leverages Gemini's capabilities for context management and caching. This server maximizes the value of Gemini's 2M token context window while providing tools for efficient caching of large contexts.
# Clone the repository
git clone https://github.com/ogoldberg/gemini-context-mcp-server
cd gemini-context-mcp
# Install dependencies
npm install
# Copy environment variables example
cp .env.example .env
# Add your Gemini API key to .env file
# GEMINI_API_KEY=your_api_key_here
# Build the server
npm run build
# Start the server
node dist/mcp-server.js
This MCP server can be integrated with various MCP-compatible clients:
For detailed integration instructions with each client, see the MCP Client Configuration Guide in the MCP documentation.
Use our simplified client installation commands:
# Install and configure for Claude Desktop
npm run install:claude
# Install and configure for Cursor
npm run install:cursor
# Install and configure for VS Code
npm run install:vscode
Each command sets up the appropriate configuration files and provides instructions for completing the integration.
Start the server:
shell
node dist/mcp-server.js
Interact using the provided test scripts:
```shell
node test-gemini-context.js
node test-gemini-api-cache.js
```
import { GeminiContextServer } from './src/gemini-context-server.js';
async function main() {
// Create server instance
const server = new GeminiContextServer();
// Generate a response in a session
const sessionId = "user-123";
const response = await server.processMessage(sessionId, "What is machine learning?");
console.log("Response:", response);
// Ask a follow-up in the same session (maintains context)
const followUp = await server.processMessage(sessionId, "What are popular algorithms?");
console.log("Follow-up:", followUp);
}
main();
// Custom configuration
const config = {
gemini: {
apiKey: process.env.GEMINI_API_KEY,
model: 'gemini-2.0-pro',
temperature: 0.2,
maxOutputTokens: 1024,
},
server: {
sessionTimeoutMinutes: 30,
maxTokensPerSession: 1000000
}
};
const server = new GeminiContextServer(config);
// Create a cache for large system instructions
const cacheName = await server.createCache(
'Technical Support System',
'You are a technical support assistant for a software company...',
7200 // 2 hour TTL
);
// Generate content using the cache
const response = await server.generateWithCache(
cacheName,
'How do I reset my password?'
);
// Clean up when done
await server.deleteCache(cacheName);
This server implements the Model Context Protocol (MCP), making it compatible with tools like Cursor or other AI-enhanced development environments.
generate_text
- Generate text with contextget_context
- Get current context for a sessionclear_context
- Clear session contextadd_context
- Add specific context entriessearch_context
- Find relevant context semanticallymcp_gemini_context_create_cache
- Create a cache for large contextsmcp_gemini_context_generate_with_cache
- Generate with cached contextmcp_gemini_context_list_caches
- List all available cachesmcp_gemini_context_update_cache_ttl
- Update cache TTLmcp_gemini_context_delete_cache
- Delete a cacheWhen used with Cursor, you can connect via the MCP configuration:
{
"name": "gemini-context",
"version": "1.0.0",
"description": "Gemini context management and caching MCP server",
"entrypoint": "dist/mcp-server.js",
"capabilities": {
"tools": true
},
"manifestPath": "mcp-manifest.json",
"documentation": "README-MCP.md"
}
For detailed usage instructions for MCP tools, see README-MCP.md.
Create a .env
file with these options:
# Required
GEMINI_API_KEY=your_api_key_here
GEMINI_MODEL=gemini-2.0-flash
# Optional - Model Settings
GEMINI_TEMPERATURE=0.7
GEMINI_TOP_K=40
GEMINI_TOP_P=0.9
GEMINI_MAX_OUTPUT_TOKENS=2097152
# Optional - Server Settings
MAX_SESSIONS=50
SESSION_TIMEOUT_MINUTES=120
MAX_MESSAGE_LENGTH=1000000
MAX_TOKENS_PER_SESSION=2097152
DEBUG=false
# Build TypeScript files
npm run build
# Run in development mode with auto-reload
npm run dev
# Run tests
npm test
MIT