The Kubectl MCP Server is a Model Context Protocol (MCP) server designed to enable AI assistants like Claude, Cursor, and others to interact with Kubernetes clusters through natural language. This tool bridges the gap between Kubernetes operations and AI-driven workflows, making cluster management more intuitive and accessible.
The Kubectl MCP Tool implements the Model Context Protocol (MCP), enabling AI assistants to interact with Kubernetes clusters through a standardized interface. The architecture consists of:
1. MCP Server: A compliant server that handles requests from MCP clients (AI assistants)
2. Tools Registry: Registers Kubernetes operations as MCP tools with schemas
3. Transport Layer: Supports stdio, SSE, and HTTP transport methods
4. Core Operations: Translates tool calls to Kubernetes API operations
5. Response Formatter: Converts Kubernetes responses to MCP-compliant responses
The tool operates in two modes:
1. CLI Mode: Direct command-line interface for executing Kubernetes operations
2. Server Mode: Running as an MCP server to handle requests from AI assistants
For detailed installation instructions, please see the Installation Guide.
You can install kubectl-mcp-tool directly from PyPI:
pip install kubectl-mcp-tool
For a specific version:
pip install kubectl-mcp-tool==1.1.0
# Install latest version from PyPI
pip install kubectl-mcp-tool
# Or install development version from GitHub
pip install git+https://github.com/rohitg00/kubectl-mcp-server.git
# Clone the repository
git clone https://github.com/rohitg00/kubectl-mcp-server.git
cd kubectl-mcp-server
# Install in development mode
pip install -e .
After installation, verify the tool is working correctly:
# Check CLI mode
kubectl-mcp --help
Add the following to your Claude Desktop configuration at ~/.config/claude/mcp.json
(Windows: %APPDATA%\Claude\mcp.json
):
{
"mcpServers": {
"kubernetes": {
"command": "python",
"args": ["-m", "kubectl_mcp_tool.minimal_wrapper"],
"env": {
"KUBECONFIG": "/path/to/your/.kube/config"
}
}
}
}
Add the following to your Cursor AI settings under MCP by adding a new global MCP server:
{
"mcpServers": {
"kubernetes": {
"command": "python",
"args": ["-m", "kubectl_mcp_tool.minimal_wrapper"],
"env": {
"KUBECONFIG": "/path/to/your/.kube/config",
"PATH": "/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/opt/homebrew/bin"
}
}
}
}
Add the following to your Windsurf configuration at ~/.config/windsurf/mcp.json
(Windows: %APPDATA%\WindSurf\mcp.json
):
{
"mcpServers": {
"kubernetes": {
"command": "python",
"args": ["-m", "kubectl_mcp_tool.minimal_wrapper"],
"env": {
"KUBECONFIG": "/path/to/your/.kube/config"
}
}
}
}
For automatic configuration of all supported AI assistants, run the provided installation script:
bash install.sh
List all pods in the default namespace
Create a deployment named nginx-test with 3 replicas using the nginx:latest image
Get logs from the nginx-test pod
Forward local port 8080 to port 80 on the nginx-test pod
# Clone the repository
git clone https://github.com/rohitg00/kubectl-mcp-server.git
cd kubectl-mcp-server
# Install dependencies
pip install -r requirements.txt
# Install in development mode
pip install -e .
# Run tests
python -m python_tests.test_all_features
├── kubectl_mcp_tool/ # Main package
│ ├── __init__.py # Package initialization
│ ├── cli.py # CLI entry point
│ ├── mcp_server.py # MCP server implementation
│ ├── mcp_kubectl_tool.py # Main kubectl MCP tool implementation
│ ├── natural_language.py # Natural language processing
│ ├── diagnostics.py # Diagnostics functionality
│ ├── core/ # Core functionality
│ ├── security/ # Security operations
│ ├── monitoring/ # Monitoring functionality
│ ├── utils/ # Utility functions
│ └── cli/ # CLI functionality components
├── python_tests/ # Test suite
│ ├── run_mcp_tests.py # Test runner script
│ ├── mcp_client_simulator.py # MCP client simulator for mock testing
│ ├── test_utils.py # Test utilities
│ ├── test_mcp_core.py # Core MCP tests
│ ├── test_mcp_security.py # Security tests
│ ├── test_mcp_monitoring.py # Monitoring tests
│ ├── test_mcp_nlp.py # Natural language tests
│ ├── test_mcp_diagnostics.py # Diagnostics tests
│ └── mcp_test_strategy.md # Test strategy documentation
├── docs/ # Documentation
│ ├── README.md # Documentation overview
│ ├── INSTALLATION.md # Installation guide
│ ├── integration_guide.md # Integration guide
│ ├── cursor/ # Cursor integration docs
│ ├── windsurf/ # Windsurf integration docs
│ └── claude/ # Claude integration docs
├── compatible_servers/ # Compatible MCP server implementations
│ ├── cursor/ # Cursor-compatible servers
│ ├── windsurf/ # Windsurf-compatible servers
│ ├── minimal/ # Minimal server implementations
│ └── generic/ # Generic MCP servers
├── requirements.txt # Python dependencies
├── setup.py # Package setup script
├── pyproject.toml # Project configuration
├── MANIFEST.in # Package manifest
├── LICENSE # MIT License
├── CHANGELOG.md # Version history
├── .gitignore # Git ignore file
├── install.sh # Installation script
├── publish.sh # PyPI publishing script
└── start_mcp_server.sh # Server startup script
Contributions are welcome! Please feel free to submit a Pull Request.
1. Fork the repository
2. Create your feature branch (git checkout -b feature/amazing-feature
)
3. Commit your changes (git commit -m 'Add some amazing feature'
)
4. Push to the branch (git push origin feature/amazing-feature
)
5. Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
A Model Context Protocol (MCP) server for Kubernetes that enables AI assistants like Claude, Cursor, and others to interact with Kubernetes clusters through natural language.
No releases published
No packages published