You signed in with another tab or window. Reload
to refresh your session. You signed out in another tab or window. Reload
to refresh your session. You switched accounts on another tab or window. Reload
to refresh your session. Dismiss alert
sjquant / llm-bridge-mcp Public
A model-agnostic Message Control Protocol (MCP) server that enables seamless integration with various Large Language Models (LLMs) like GPT, DeepSeek, Claude, and more.
3 stars
0 forks
Branches
Tags
Activity
Notifications
You must be signed in to change notification settings
main
Go to file
Code
| Name | | Name | Last commit message | Last commit date |
| --- | --- | --- | --- |
| Latest commit
-------------
History
-------
7 Commits
| | |
| .github/workflows | | .github/workflows | | |
| .vscode | | .vscode | | |
| llm_bridge_mcp | | llm_bridge_mcp | | |
| .cursorignore | | .cursorignore | | |
| .dockerignore | | .dockerignore | | |
| .gitignore | | .gitignore | | |
| .python-version | | .python-version | | |
| Dockerfile | | Dockerfile | | |
| LICENSE | | LICENSE | | |
| README.md | | README.md | | |
| pyproject.toml | | pyproject.toml | | |
| smithery.yaml | | smithery.yaml | | |
| uv.lock | | uv.lock | | |
| View all files | | |
LLM Bridge MCP allows AI agents to interact with multiple large language models through a standardized interface. It leverages the Message Control Protocol (MCP) to provide seamless access to different LLM providers, making it easy to switch between models or use multiple models in the same application.
The server implements the following tool:
run_llm(
prompt: str,
model_name: KnownModelName = "openai:gpt-4o-mini",
temperature: float = 0.7,
max_tokens: int = 8192,
system_prompt: str = "",
) -> LLMResponse
prompt
: The text prompt to send to the LLMmodel_name
: Specific model to use (default: "openai:gpt-4o-mini")temperature
: Controls randomness (0.0 to 1.0)max_tokens
: Maximum number of tokens to generatesystem_prompt
: Optional system prompt to guide the model's behaviorTo install llm-bridge-mcp for Claude Desktop automatically via Smithery
:
npx -y @smithery/cli install @sjquant/llm-bridge-mcp --client claude
git clone https://github.com/yourusername/llm-bridge-mcp.git
cd llm-bridge-mcp
# On macOS
brew install uv
# On Linux
curl -LsSf https://astral.sh/uv/install.sh | sh
# On Windows
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
Create a .env
file in the root directory with your API keys:
OPENAI_API_KEY=your_openai_api_key
ANTHROPIC_API_KEY=your_anthropic_api_key
GOOGLE_API_KEY=your_google_api_key
DEEPSEEK_API_KEY=your_deepseek_api_key
Add a server entry to your Claude Desktop configuration file or .cursor/mcp.json
:
"mcpServers": {
"llm-bridge": {
"command": "uvx",
"args": [\
"llm-bridge-mcp"\
],
"env": {
"OPENAI_API_KEY": "your_openai_api_key",
"ANTHROPIC_API_KEY": "your_anthropic_api_key",
"GOOGLE_API_KEY": "your_google_api_key",
"DEEPSEEK_API_KEY": "your_deepseek_api_key"
}
}
}
This error occurs when the system cannot find the uvx
executable in your PATH. To resolve this:
Solution: Use the full path to uvx
Find the full path to your uvx executable:
# On macOS/Linux
which uvx
# On Windows
where.exe uvx
Then update your MCP server configuration to use the full path:
"mcpServers": {
"llm-bridge": {
"command": "/full/path/to/uvx", // Replace with your actual path
"args": [\
"llm-bridge-mcp"\
],
"env": {
// ... your environment variables
}
}
}
This project is licensed under the MIT License - see the LICENSE file for details.
A model-agnostic Message Control Protocol (MCP) server that enables seamless integration with various Large Language Models (LLMs) like GPT, DeepSeek, Claude, and more.
mcp
openai
claude
llm
anthropic
model-context-protocol
mcp-server
pydantic-ai
deepssek-r1
No packages published
You can’t perform that action at this time.