sjquant_llm_bridge_mcp

sjquant_llm_bridge_mcp

by sjquant

License

Skip to content

You signed in with another tab or window. Reload
to refresh your session. You signed out in another tab or window. Reload
to refresh your session. You switched accounts on another tab or window. Reload
to refresh your session. Dismiss alert

sjquant / llm-bridge-mcp Public

A model-agnostic Message Control Protocol (MCP) server that enables seamless integration with various Large Language Models (LLMs) like GPT, DeepSeek, Claude, and more.

License

MIT license

3 stars
0 forks
Branches
Tags
Activity

Star

Notifications
You must be signed in to change notification settings

sjquant/llm-bridge-mcp

main

Branches
Tags


Go to file

Code

Folders and files

| Name | | Name | Last commit message | Last commit date |
| --- | --- | --- | --- |
| Latest commit
-------------

History
-------

7 Commits

| | |
| .github/workflows | | .github/workflows | | |
| .vscode | | .vscode | | |
| llm_bridge_mcp | | llm_bridge_mcp | | |
| .cursorignore | | .cursorignore | | |
| .dockerignore | | .dockerignore | | |
| .gitignore | | .gitignore | | |
| .python-version | | .python-version | | |
| Dockerfile | | Dockerfile | | |
| LICENSE | | LICENSE | | |
| README.md | | README.md | | |
| pyproject.toml | | pyproject.toml | | |
| smithery.yaml | | smithery.yaml | | |
| uv.lock | | uv.lock | | |
| View all files | | |

Repository files navigation

LLM Bridge MCP

smithery badge

LLM Bridge MCP allows AI agents to interact with multiple large language models through a standardized interface. It leverages the Message Control Protocol (MCP) to provide seamless access to different LLM providers, making it easy to switch between models or use multiple models in the same application.

Features

  • Unified interface to multiple LLM providers:
    • OpenAI (GPT models)
    • Anthropic (Claude models)
    • Google (Gemini models)
    • DeepSeek
    • ...
  • Built with Pydantic AI for type safety and validation
  • Supports customizable parameters like temperature and max tokens
  • Provides usage tracking and metrics

Tools

The server implements the following tool:

run_llm(
    prompt: str,
    model_name: KnownModelName = "openai:gpt-4o-mini",
    temperature: float = 0.7,
    max_tokens: int = 8192,
    system_prompt: str = "",
) -> LLMResponse
  • prompt: The text prompt to send to the LLM
  • model_name: Specific model to use (default: "openai:gpt-4o-mini")
  • temperature: Controls randomness (0.0 to 1.0)
  • max_tokens: Maximum number of tokens to generate
  • system_prompt: Optional system prompt to guide the model's behavior

Installation

Installing via Smithery

To install llm-bridge-mcp for Claude Desktop automatically via Smithery
:

npx -y @smithery/cli install @sjquant/llm-bridge-mcp --client claude

Manual Installation

  1. Clone the repository:
git clone https://github.com/yourusername/llm-bridge-mcp.git
cd llm-bridge-mcp
  1. Install uv
    (if not already installed):
# On macOS
brew install uv

# On Linux
curl -LsSf https://astral.sh/uv/install.sh | sh

# On Windows
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"

Configuration

Create a .env file in the root directory with your API keys:

OPENAI_API_KEY=your_openai_api_key
ANTHROPIC_API_KEY=your_anthropic_api_key
GOOGLE_API_KEY=your_google_api_key
DEEPSEEK_API_KEY=your_deepseek_api_key

Usage

Using with Claude Desktop or Cursor

Add a server entry to your Claude Desktop configuration file or .cursor/mcp.json:

"mcpServers": {
  "llm-bridge": {
    "command": "uvx",
    "args": [\
      "llm-bridge-mcp"\
    ],
    "env": {
      "OPENAI_API_KEY": "your_openai_api_key",
      "ANTHROPIC_API_KEY": "your_anthropic_api_key",
      "GOOGLE_API_KEY": "your_google_api_key",
      "DEEPSEEK_API_KEY": "your_deepseek_api_key"
    }
  }
}

Troubleshooting

Common Issues

1. "spawn uvx ENOENT" Error

This error occurs when the system cannot find the uvx executable in your PATH. To resolve this:

Solution: Use the full path to uvx

Find the full path to your uvx executable:

# On macOS/Linux
which uvx

# On Windows
where.exe uvx

Then update your MCP server configuration to use the full path:

"mcpServers": {
  "llm-bridge": {
    "command": "/full/path/to/uvx",  // Replace with your actual path
    "args": [\
      "llm-bridge-mcp"\
    ],
    "env": {
      // ... your environment variables
    }
  }
}

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

A model-agnostic Message Control Protocol (MCP) server that enables seamless integration with various Large Language Models (LLMs) like GPT, DeepSeek, Claude, and more.

Topics

mcp
openai
claude
llm
anthropic
model-context-protocol
mcp-server
pydantic-ai
deepssek-r1

Resources

Readme

License

MIT license

Activity

Stars

3 stars

Watchers

1 watching

Forks

0 forks

Report repository

Releases 3


v0.1.2 Latest\
\
Mar 28, 2025

+ 2 releases

Packages 0


No packages published

Contributors 2


Languages

You can’t perform that action at this time.

Features & Capabilities

Categories
mcp_server model_context_protocol

Implementation Details

Stats

0 Views
3 GitHub Stars

Repository Info

sjquant Organization

Similar MCP Servers

continuedev_continue by continuedev
25049
21423
9300